

University Medicine Essen Institute for Artificial Intelligence in Medicine

Paper PDF

Mirror U-Net: Marrying Multimodal Fission with Multi-task Learning for Semantic Segmentation in Medical Imaging

Zdravko Marinov^{*,1,3}, Simon Reiß¹, David Kersting^{2,5,7}, Jens Kleesiek^{4,7}, Rainer Stiefelhagen¹

¹ Karlsruhe Institute of Technology, Karlsruhe, Germany, ² German Cancer Consortium (DKTK), Germany ³ HIDSS4Health – Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany, ⁴ Institute for AI in Medicine, University Hospital Essen, Essen, Germany, ⁵ Department of Nuclear Medicine, University Hospital Essen, ⁶ West German Cancer Center, Germany ⁷ Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany

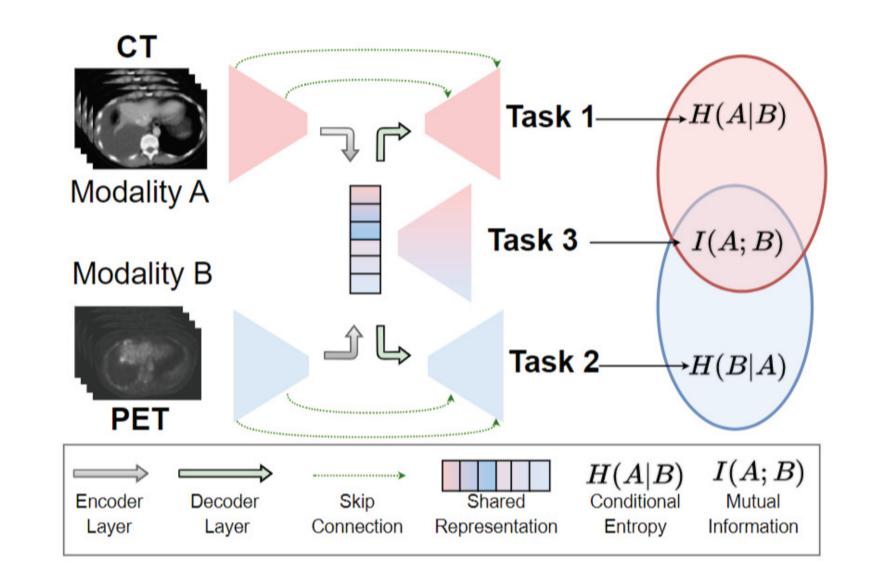
* zdravko.marinov@kit.edu

Traditional fusion approaches (early, mid-, and late fusion) do not

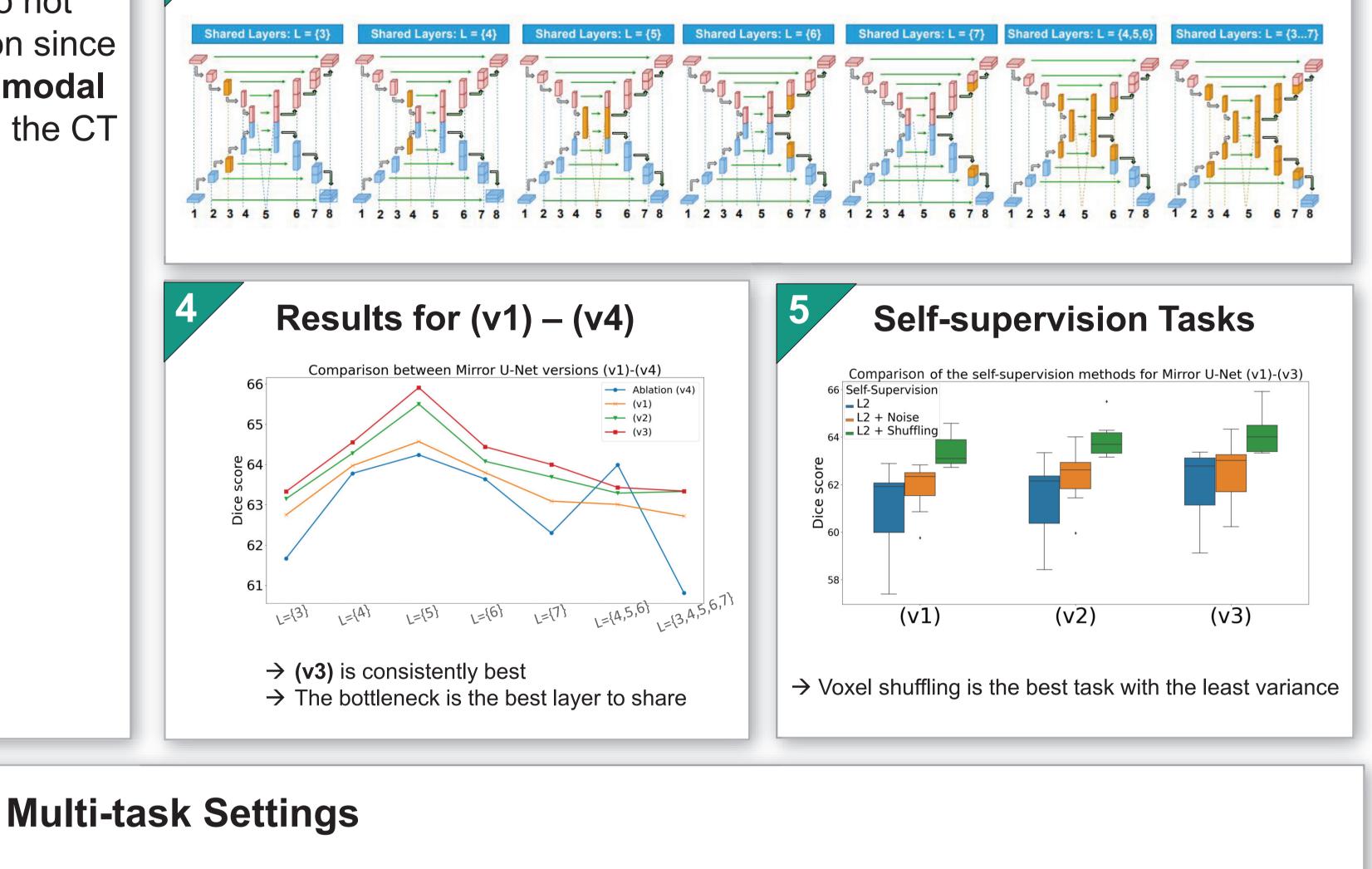
Weight Sharing Experiments

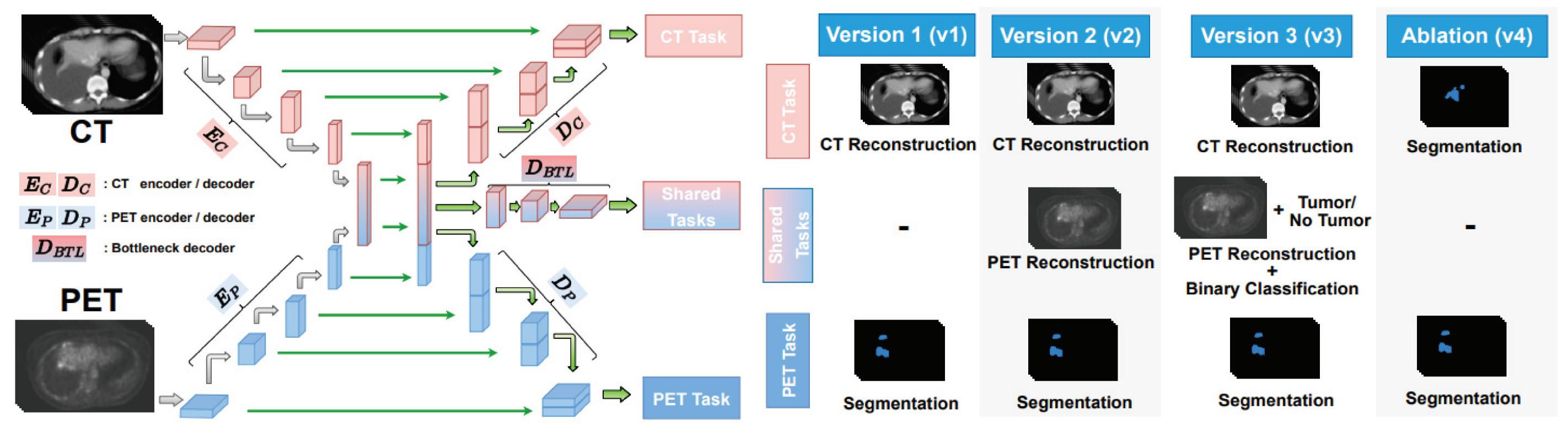
perform well on multimodal PET/CT data for lesion segmentation since CT provides a very weak signal. We propose to combine **multimodal** fission* with multi-task learning to extract useful features from the CT and boost the segmentation on the AutoPET dataset [1].

Aim



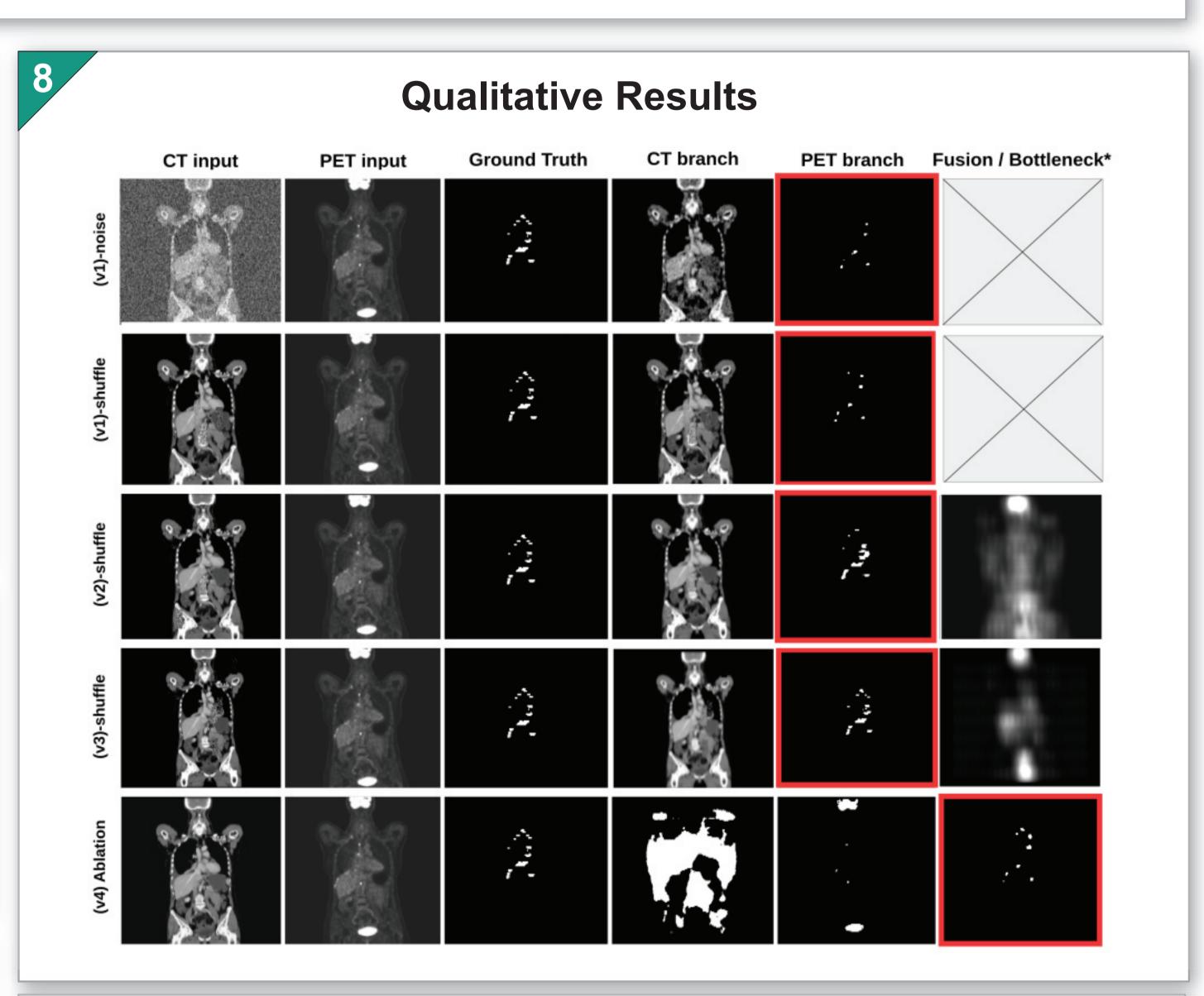
*Multimodal fission: Fusion followed by factorized or partitioned features.





Comparison to Related Work

Method	Dice \uparrow	$\mathrm{FPV}\downarrow$	FNV \downarrow	Tasks	Multimodal Fission	Multi-task
nnUNet [17]	62.75	2.83	1.59	Seg		
Blackbean [47]	63.15	2.55	1.76	Seg		
SF-Net [27]	61.21	3.44	2.95	Seg + Rec		\checkmark
Andrearczyk et al. [1]	61.45	2.98	1.89	Seg + Class		\checkmark
DeepMTS [31]	61.91	3.22	2.76	Seg + Class		\checkmark
Weninger et al. [44]	61.22	3.98	2.82	Seg + Rec + Class		\checkmark
CT-only Mirror U-Net (v3)	12.37	28.24	50.02	Seg + Rec + Class		\checkmark
PET-only Mirror U-Net (v3)	56.14	4.81	3.02	Seg + Rec + Class		\checkmark
Mirror U-Net (v4)	64.24	2.93	1.99	Seg	\checkmark	
Valindria et al. [42]	39.84	7.89	17.00	Seg	\checkmark	
(Ours) Mirror U-Net (v3)	65.91	1.55	0.76	Seg + Rec + Class	\checkmark	\checkmark



FPV: False Positive Volume, FNV: False Negative Volume

Comparison to Traditional Fusion Strategies

Metric		Baselines							Mirror U-Net (Ours)			
	CT	PET	EF	MF	LF-Logit	LF-∪	LF-∩	(v1)	(v2)	(v3)	Ablation (v4)	
Dice ↑	26.00	60.99	54.89	55.53	57.41	59.89	21.60	64.57	65.50	65.91	64.24	
$FPV\downarrow$	15.64	5.38	4.98	4.77	4.88	3.95	1.67	2.93	2.83	1.55	2.93	
$FNV\downarrow$	44.15	2.15	3.13	3.02	2.88	3.01	99.74	1.66	0.94	0.76	1.99	

EF: Early Fusion, MF: Mid Fusion, LF: Late Fusion

Conclusion

- Traditional fusion methods do not utilize the information in the CT and lead to overfitting. However, combining multimodal fission with multi-task learning significantly improves the performance on AutoPET [1]
- The modality-specific tasks must be chosen carefully
- The bottleneck proved to be the best location to share features in all experiments

References

[1] Gatidis, Sergios, et al. "The autoPET challenge: Towards fully automated lesion segmentation in oncologic PET/CT imaging." (2023) [2] Valindria, Vanya V., et al. "Multi-modal learning from unpaired images: Application to multi-organ segmentation in CT and MRI." WACV (2018) [3] Isensee, Fabian, et al. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nature methods (2021) [4] Weninger, Leon. "Multi-task learning for brain tumor segmentation." BrainLes MICCAI Workshop (2019)

Acknowledgements: This project is supported by the Helmholtz Association under the joint research school "HIDSS4HealthHelmholtz Information and Data Science School for Health".